3x^2+65x+150=0

Simple and best practice solution for 3x^2+65x+150=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+65x+150=0 equation:


Simplifying
3x2 + 65x + 150 = 0

Reorder the terms:
150 + 65x + 3x2 = 0

Solving
150 + 65x + 3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
50 + 21.66666667x + x2 = 0

Move the constant term to the right:

Add '-50' to each side of the equation.
50 + 21.66666667x + -50 + x2 = 0 + -50

Reorder the terms:
50 + -50 + 21.66666667x + x2 = 0 + -50

Combine like terms: 50 + -50 = 0
0 + 21.66666667x + x2 = 0 + -50
21.66666667x + x2 = 0 + -50

Combine like terms: 0 + -50 = -50
21.66666667x + x2 = -50

The x term is 21.66666667x.  Take half its coefficient (10.83333334).
Square it (117.3611113) and add it to both sides.

Add '117.3611113' to each side of the equation.
21.66666667x + 117.3611113 + x2 = -50 + 117.3611113

Reorder the terms:
117.3611113 + 21.66666667x + x2 = -50 + 117.3611113

Combine like terms: -50 + 117.3611113 = 67.3611113
117.3611113 + 21.66666667x + x2 = 67.3611113

Factor a perfect square on the left side:
(x + 10.83333334)(x + 10.83333334) = 67.3611113

Calculate the square root of the right side: 8.207381513

Break this problem into two subproblems by setting 
(x + 10.83333334) equal to 8.207381513 and -8.207381513.

Subproblem 1

x + 10.83333334 = 8.207381513 Simplifying x + 10.83333334 = 8.207381513 Reorder the terms: 10.83333334 + x = 8.207381513 Solving 10.83333334 + x = 8.207381513 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-10.83333334' to each side of the equation. 10.83333334 + -10.83333334 + x = 8.207381513 + -10.83333334 Combine like terms: 10.83333334 + -10.83333334 = 0.00000000 0.00000000 + x = 8.207381513 + -10.83333334 x = 8.207381513 + -10.83333334 Combine like terms: 8.207381513 + -10.83333334 = -2.625951827 x = -2.625951827 Simplifying x = -2.625951827

Subproblem 2

x + 10.83333334 = -8.207381513 Simplifying x + 10.83333334 = -8.207381513 Reorder the terms: 10.83333334 + x = -8.207381513 Solving 10.83333334 + x = -8.207381513 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-10.83333334' to each side of the equation. 10.83333334 + -10.83333334 + x = -8.207381513 + -10.83333334 Combine like terms: 10.83333334 + -10.83333334 = 0.00000000 0.00000000 + x = -8.207381513 + -10.83333334 x = -8.207381513 + -10.83333334 Combine like terms: -8.207381513 + -10.83333334 = -19.040714853 x = -19.040714853 Simplifying x = -19.040714853

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-2.625951827, -19.040714853}

See similar equations:

| (2*3*6)*(4+R)=0 | | 6s^2-47s+35=0 | | 7x+12=8x-3 | | 1.76g-6=0.16 | | 3(8-x)-48=27x-6(4+5x) | | 4(3x-y)=24-3x | | 1.76-6=0.16 | | X+38=31 | | 3x-3=17+8x | | 3(8x-x)-48=27x-6(4+5x) | | 30x^2+41x+6=0 | | 8x^2=7-3x | | x^2+4x-3x-12=8 | | 28t-16t^2=20 | | x^1+4x-3x-12=8 | | a^4+16a^2-225=0 | | 3x-12=4x+18 | | 20=128t-16t^2 | | 12(6t+1)-15=t(t+2) | | -5x^2-2x-1=0 | | 5(-5+5k)=39-7k | | 75=3r(-6n-5) | | 4(3x+y)=24-3x | | 39-(x+6)=8x-3 | | -211=-6(5+6v)-1 | | 2x-20=88 | | 8(x+7)-(5x-1)=1 | | 13+10x=5(2x+4) | | -2(6x+9)=-12x-18 | | 2x+4+x=0 | | 4y-10+y+51=7y+50-5y | | 6*x-(5*sqrt(x))-6=0 |

Equations solver categories